If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7k^2+2k-2=0
a = 7; b = 2; c = -2;
Δ = b2-4ac
Δ = 22-4·7·(-2)
Δ = 60
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{60}=\sqrt{4*15}=\sqrt{4}*\sqrt{15}=2\sqrt{15}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{15}}{2*7}=\frac{-2-2\sqrt{15}}{14} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{15}}{2*7}=\frac{-2+2\sqrt{15}}{14} $
| 1/2(4x+10)=7x-7 | | -7(n+8)=-36-2n | | 10+3+2(x-2)=5 | | 2x+54=6x-14 | | 7x-13x=-24 | | f/9+25=-29 | | 4-2(x+7)=3x-3 | | 5x-1/3=12 | | 6x+9=55-10x | | g/4+12=25 | | X×x×x=512 | | -40+7m=6(1+5m) | | 31=3n+10 | | -3(a+2)=4(a-1)+5 | | f.3-20=-25 | | 2+2(3n-1)=36 | | -3a^2-10=-310 | | 4/g+12=25 | | g.2+15=27 | | 19080/x*0.02x=38 | | -6x-5(4x+7)=173 | | x+12=6(2+7x) | | 6x^2+1=122 | | 8-3n=5-3(2n+1) | | -9v-7=42v+8 | | 5x+4+8x+4=56 | | 7u-2/5=2/3u-7/3 | | 5x-3+4x=2x+11 | | 56=-4n | | -7(6x-5)=165 | | x+12=6(2+7) | | 7u-2/5=7/3 |